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Abstract. We study the properties of strongly correlated systems, calculating the self-energy of
the electronic propagator of small-size clusters. We focus our attention on the one-dimensional
Hubbard model. It is shown that for adequate sizes and boundary conditions, the self-energy of
such a small cluster possesses the correct singular behaviour in the vicinity of the Fermi level for
all values of the intra-atomic electron–electron interaction parameterU . The charge-transfer gap
and other physical properties of the system are obtained at the thermodynamic limit. The survival
of a single-pole singularity atw = 0 for the infinite-system self-energy constitutes a criterion for
establishing whether the system is an insulator or a metal.

The properties of strongly correlated systems are attracting renewed interest in solid-state
physics. Mainly due to the great complexity of the problem, it has not been possible to obtain
exact solutions, except for very particular limits and systems. One of the simplest models
which is supposed to possess the essential ingredients of highly correlated electrons is the
Hubbard model. An exact analytical solution for the ground state of a one-dimensional (1D)
system and its related properties was obtained many years ago [1–3]. A variety of approximate
methods have been used, proving their capabilities as regards properly describing the known
physics of the 1D system. They have also been used to study its other properties. These
methods include diagrammatic summation [4], bosonization [5], renormalization group [6,7]
and conformal approaches [8, 9]. This has permitted a detailed knowledge of the problem to
be obtained. It is now clear that in 1D the system is not a Fermi liquid, quasi-particles do not
exist, there is no well defined Fermi surface and the occupation number is not discontinuous
at the Fermi wavenumber. Although, at half-filling, the system is an insulator for any arbitrary
small intra-atomic electronic repulsion parameterU , it is a metal for any other charge content.
This unusual one-dimensional behaviour corresponds to what has been described as a Luttinger
liquid. Although the above-mentioned techniques have given some important insights into the
physics of higher-dimensional systems, the completeness of the knowledge that we possess
for the 1D case is unfortunately lacking.

Alternative exact numerical solutions restricted to small clusters designed to represent 1D
and 2D systems have been obtained [11]. Although good work has been carried out that is
devoted to exact numerical calculation, this is a tool with severe shortcomings. Its capabilities
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are restricted to studying large energy excitations, local thermodynamic mean values and
short-range correlations as functions of the parameters of the Hamiltonian. These limitations
obviously derive from the finite size of the cluster studied. We know that this approach
is in principle not appropriate for the 1D case for which the charge–charge and spin–spin
correlations are long range in character, following asymptotic power laws with logarithmic
corrections [10]. However, we were able to show that it is possible to obtain some insight
into the 1D physics of an infinite system from the results obtained by exact diagonalization
of a finite cluster. This lends support to our claim of its applicability for studying 2D and
3D systems where physical quantities have a more local character. In order to do this, it is
necessary to know what the properties are and under what conditions the exact solution for
a small-size system contains information which is relevant in the thermodynamic limit. It is
clear that the physics of a finite cluster introduces an energy scale which follows from the
energy discretization of the one-particle spectrum and that depends upon the size of it. The
cluster has to be designed in such a way that this spurious energy scale, which does not exist
in the thermodynamic limit, is not present for the charge excitations, at least in the vicinity of
the Fermi energy. The electron–hole symmetry (EHS) at half-filling is another property which
has to be preserved in the cluster, as it is an essential property of the infinite system.

In this paper we study the electronic propagator of a small 1D cluster and show how
some of the properties of an infinite Hubbard chain can be deduced from it. We show that the
propagator self-energy in the vicinity of the Fermi level and clusters and boundary conditions
correctly chosen guarantee a good physical description in the thermodynamic limit.

We use the EHS property to derive an important analytical behaviour of the propagator
self-energy.

In general, the one-particle propagator (OPP) can be expressed as

Gk(w) =
∑
m

|〈m|Ck,σ |0〉|2
w + δEN−1

m,k − iη
+
∑
n

|〈n|C†
k,σ |0〉|2

w − δEN+1
n,k + iη

. (1)

The frequencyw is measured from the chemical potential of the system.δEN−1
m,k , δEN+1

n,k are
the energies of the excitations|m〉, |n〉 of N − 1 andN + 1 particles respectively and|0〉 is
theN -particle ground state. AtU = 0 these energies are equal to the absolute value of the
free-electron energy|ek|. We define the quasiparticle weights as

ak,m = |〈m|Ck,σ |0〉|2 (2)

bk,m = |〈n|C†
k,σ |0〉|2. (3)

The ground state of the system has total momentumK = 0. We analyse the OPP for the Fermi
wave vectorkf = π/2. Due to the EHS, at half-filling we can write that

akf ,n = bkf ,m = am
δEN+1

m,kf
= δEN−1

m,kf
= δEm. (4)

The expression (1) for the OPP can be written as

Gkf (w) =
∑
m

2amw

w2 − δE2
m

+ igkf (w) (5)

where

gk(w) =
∑
m

iπ(δ(w + δEm,k)− δ(w − δEm,k)). (6)

Defining the self-energy6k(w) from the equation

Gk(w) = (w −6k(w))−1 (7)
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and using equation (4) atk = kf , it turns out that

6kf (w) = w −
[
w
∑
m

(
2am

w2 − δE2
m

)
+ igkf (w)

]−1

. (8)

Now, let us suppose that there is a gap in the excitation spectrum of the problem. In this case,
in the limitw→ 0, the self-energy is real and we can write (8) as

6kf (w) =
c

w
+w(1− b) (9)

where

c =
(∑

m

2am
δE2

m

)−1

(10)

b = −
∑
m

4am
δE2

m

(∑
m

2am
δE2

m

)−2

. (11)

Equations (9), (10) show that the existence of a gap gives rise to a self-energy with a single
pole at the Fermi level. Note that this is true even when in the thermodynamic limit the OPP
in general has no single poles and instead has a branch cut along the frequency axis [12]. This
is a property which follows exclusively from the EHS and it is valid in any dimension when
the system has a gap at the Fermi level. Then, from (7), it is easy to show that the gap1 is
given by

1 = 2
√
c/(1− b). (12)

The analysis fork 6= π/2 is similar, but in this caseak,m 6= bk,m. Then we obtain for the OPP
the following expression:

Gk(w) =
∑
m

(ak,m + bk,m)
w + [(bk,m − ak,m)/(bk,m + ak,m)]δEm,k

w2 − δE2
m,k

+ igk(w). (13)

At w = 0 the OPP and the self-energy are analytical functions. For the rest of the spectrum
outside the gap, the OPP has a branch cut which coincides with the support of the density of
states of the system.

For a finite-size system the branch cut transforms into single-pole singularities located at
the excitation energies, which are related to the single-pole singularities of the self-energy. In
fact, the self-energy can be written as

6k(w) = w −
(∏

m

(w2 − δE2
m,k)

)/
Pk,2M−1(w) (14)

Pk,2M−1(w) =
∑
m

(ak,m + bk,m)

(
w +

bk,m − ak,m
bk,m + ak,m

δEl,k

)∏
l 6=m
(w2 − δE2

l,k) (15)

whereM is the number of excitations of total momentumK = k and Pk,2M−1(w) is a
polynomial of degree 2M − 1. The roots of this polynomial are the single poles of the self-
energy, each one intercalated in(δEm,k, δEm+1,k). It is evident from (14) that in the case where
k = π/2, i.e. whenbk,m = ak,m, the self-energy has a single pole atw = 0. It is important
to call attention to the behaviour of these poles in the thermodynamic limit. The residues
of the OPP poles tend to a finite value in the vicinity of the Fermi level where the system is
a Fermi liquid and there are quasi-particle excitations. This gives rise to a discontinuity in
the occupation numbernk = 〈C†

kCk〉 at k = kf . However, when the system is a Luttinger
liquid, the weights of the poles tend to zero for an infinite system. This reflects the absence of
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well defined one-particle excitations near the Fermi energy. The self-energy has very similar
analytical properties. However, even for the case of a Luttinger liquid, in the presence of a gap
at the Fermi level, the residue of thew = 0 pole tends to a finite value. The analytical structure
of the self-energy corresponds in this case to a single isolated pole atw = 0 and a branch cut
in the spectrum region outside the gap. In contrast, when no gap is present in the spectrum,
the excitation energies can be zero and in this case the branch cut includes the origin. The
self-energy of a finite-size cluster will always have aw = 0 pole. However, it is not maintained
as a single-pole singularity because its residue tends to zero in the thermodynamic limit.

The difference between the two cases can easily be detected by analysing the singularity
atw = 0, increasing the size of the system and extrapolating the result to infinite length.

We have applied these ideas to a 1D Hubbard model defined on a cluster ofL sites given
by the Hamiltonian

H =
L∑
l=1

C
†
l+1,σCl,σ + h.c. +U

L∑
l=1

nl,↑nl,↓ (16)

where the notation is as usual. The problem can be defined with open (OBC) or closed boundary
conditions. In this latter case they can be periodic (PBC) or anti-periodic (APBC).

We choose a size and a boundary condition which incorporate the relevant properties of
the thermodynamic limit [13]. They are twofold: the EHS which is reflected in the self-energy
atk = kf = π/2 and the existence of excitations of zero energy for the non-interacting system.
The main issue here is that the energy difference between the kinetic energy levels is∼t/L.
This gives rise, in the non-interacting infinite system (L → ∞), to a continuous spectrum
of excitations. The kinetic energy levels will be strongly perturbed by the interaction when
the cluster sizeL satisfiesL � t/U . For moderate values of the parameterU , this limit is
numerically not feasible because it corresponds to a very large system.

For the small-size clusters accessible to numerical study, the discrete character of the
spectrum introduces a new energy scale,t/L. The influence of this property of the cluster,
absent in the infinite system, has to be adequately treated in order to allow us to extract the
correct physics of the thermodynamic limit.

Two qualitatively different situations appear according to whether the kinetic spectrum for
the one-particle system is degenerate at the Fermi level or not. In the non-degenerate case there
is a gap at the Fermi level in the non-interacting excitation spectrum of the order oft/L. This is
the case of a cluster with PBC andL = 2(2n+1) or APBC andL = 4n, withn an integer. This
gap inhibits the effect of the correlation. It is obvious that this cluster violates the EHS, which,
according to the discussion above, controls the analytical properties of the self-energy at the
Fermi level. The response of the system toU in this case is perturbative. Near the Fermi level,
all of the diagonal and non-diagonal components of the self-energy are completely regular
and the effect of the interaction appears essentially as a displacementU/2 of the diagonal
self-energy. Taking the system to the thermodynamic limit, these self-energies will reproduce
a homogeneous restricted Hartree–Fock solution to our problem. This approximation is not
capable of producing an insulating gap, which is known to be an essential property of 1D
highly correlated electrons. These systems are Mott insulators for any arbitrary value of the
parameterU . This property will never be obtained from clusters with these sizes and boundary
conditions.

The degenerate case is a different physical situation, since the non-interacting electronic
excitations have no gap at the Fermi level and the EHS is preserved. We can obtain this
case by choosing sizes or boundary conditions as follows: PBC andL = 4n or APBC and
L = 2(2n + 1). In these cases, as the Fermi level is degenerate, the response of the system
to U is highly non-perturbative, even forU � t/L. To incorporate an extra particle into
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the finite system requires in this case an extra energy proportional toU . The single-pole
singularity atw = 0 controlling the gap is now present in the self-energy, as is shown in
figure 1. Decomposing (14) into simple fractions, the self-energy can be written as

6k(w) =
∑
m

ak,m

w − wk,m +
U

2
+ 2 cos(k) + f (w) (17)

where thewk,m correspond to the roots of the polynomialPk,2M−1(w) given in (15) andf (w) is
an analytic function. The residuesak,m and the poleswk,m have been determined by diagonal-
izing finite-size clusters of lengthL = 2, 4, 6, 8, 10, with adequate boundary conditions, as
already discussed. Using a Lanczos algorithm we obtain the ground state and the Green
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Figure 1. 6′π/2(w) = 6π/2(w)−U/2 forU = 2. The coefficientsc are 1, 0.3956, 0.2386, 0.1691,
0.1306 forL = 2, 4, 6, 8, 10 respectively. The extrapolated value is 0.0069. The coefficientsb are
0,−0.0319,−0.0468,−0.0583,−0.0685 in the same order as before. The extrapolated value is
−0.1555.
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functions of the clusters [11]. From the knowledge of the Green function we get diagonal
and non-diagonal components of the self-energy6l(w) compatible with the size of the cluster
considered. We perform the Fourier transformation and obtain the residuesak,m as functions
of the length of the cluster andU . In the thermodynamic limit only the residue of the pole at
w = 0 for k = π/2 survives, as discussed above, indicating the existence of a gap. The other
excitations are distributed densely along the real axis with a residue going to zero, indicating
the existence of a branch cut and characterizing the system as a Luttinger liquid.

In order to illustrate this behaviour, we represent in figure 2 the weights of thew = 0
singularity fork = π/2 and of the singularity corresponding to the excitation of least energy
for k = 0. It is clear from the figure that while thew = 0 pole has a residue that tends
to a finite value in the thermodynamic limit, the other goes to zero exponentially as the size
is increased. It is this rapid convergence to the extrapolated values that gives rise to a very
sensitive diagnostic as regards whether a singlew = 0 pole in the thermodynamic limit exists
or not, and, as a consequence, as regards the existence of a gap.

0.00 0.10 0.20 0.30 0.40 0.50
L

−1

1.0

2.0

3.0

4.0

5.0

Coeff. c 
Coeff. ak,m   

c0

a0

Figure 2. Coefficients of the self-energy singularities fork = π/2 andk = 0 with U = 4. The
extrapolated value fork = π/2 is c0 = 0.6266. Fork = 0 andm = 0 the extrapolated value is
a0 = 0.

From the extrapolated weight of the singularity atk = π/2 we can obtain the gap, using
equation (12). In figure 3 we compare it with the analytical result for several values ofU . We
get, for moderate values ofU , an exact result for the insulating gap. For larger values,U > 8,
an accurate value for the gap requires the calculation of extra terms in (9) (∼w2, w3, . . .).

Summarizing, in the thermodynamic limit, the self-energy of a system with EHS and a
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U

0.0
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∆

SESSC calculation
Exact result

Figure 3. The gap versusU ; the self-energy small-size-cluster (SESSC) calculation and the
analytical result.

gap has a single-pole singularity atw = 0. We were able to show that, by choosing appropriate
sizes and boundary conditions, this property of the system can be extracted from the singular
behaviour of the small-cluster self-energy6k(w). This singularity exists for any value ofU
and has the correct trend as the size of the cluster is increased. This study suggests the existence
of an insulating gap when the residues of the self-energy single-pole singularity at the Fermi
level are finite at the thermodynamic limit. In this direction, investigations of clusters capable
of representing a 2D system are in progress.
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